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We prove the existence of an oscillatory instability of the Benjamin-Feir type for electromagnetic
propagation in a saturated ferrite. We do this by reducing the nonlinear equations governing the propa-
gation of electromagnetic waves in such a medium to the nonlinear Schrodinger equation. We charac-
terize regions where focusing or defocusing of the initial carrier envelope occurs in a function of three
physical parameters: the phase velocity, the quotient between the external magnetic field and the magne-
tization of saturation, and a third one related to the angle between the direction of propagation of the
carrier wave and the external magnetic field. We show that there exist points of transition between
focusing and defocusing regimes for left elliptically polarized waves. No such point exists for right ellip-
tically polarized waves. We show that all circularly polarized waves propagating parallel to the external
magnetic field are stable (unstable) if they have negative (positive) helicity.

PACS number(s)? 41.20.Jb, 03.40.Kf, 03.50.—z

I. INTRODUCTION

The study of electromagnetic wave propagation in
ferro- or ferrimagnetic media is not only of interest
theoretically but also practically, particularly in connec-
tion with the behavior of ferrite devices at microwave fre-
quencies such as ferrite-loaded waveguides [1]. The prop-
agation of electromagnetic waves in a ferromagnet obeys
nonlinear equations with dispersion and dissipation. The
linear theory has been investigated extensively by many
authors. In particular, in Ref. [2] this approach provided
a good explanation for phenomena such as cutoffs and
resonances.

Results in the nonlinear theory are also known, but
they are always partial and often based on drastic ap-
proximations of the initial dynamical equations. Recent-
ly, Nakata [3] began a rigorous study of the nonlinear
case, investigating nonlinear propagation of electromag-
netic waves of long wavelength in a saturated ferromag-
net, taking into account nonlinearity and dispersion. Us-
ing a multiscale expansion method, the Maxwell equa-
tions in the ferromagnet were reduced to the modified
Korteweg—de Vries equation.

In a previous paper [4] we studied the effects of dissipa-
tion and nonlinearity on the propagation of a small elec-
tromagnetic perturbation in an infinite saturated ferrite,
in the presence of an external constant magnetic field,
and we showed that such dynamics obeys the Burgers
equation in (1+1) and (2+ 1) dimensions.

In this paper, instead of looking for propagation of
waves with long wavelength, we investigate a modula-
tional phenomenon. We will study the way an elec-
tromagnetic plane wave is modulated by nonlinear and
dispersive effects in an infinite saturated ferromagnet.
The main result we will obtain is that the modulation of
such waves, in the lowest order of perturbation, is
governed by the nonlinear Schrodinger equation (NLS).

In one spatial dimension, it is well known that a disper-
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sive and nonlinear system such as the one studied here
can be reduced to the NLS equation. This general result
is obtained by using a Taylor expansion of the dispersion
relation w(k) of the system, which is in this case ampli-
tude dependent, around a wave number k, and frequency
@o. The reasoning involves a hypothesis about the form
of the expansion of w(k) in power series of the amplitude,
which is, from a mathematical point of view, very strong,
and makes the whole thing rather heuristic. Further-
more, this derivation of NLS does not give us either the
values or the signs of the coefficients in the final NLS
equation. The former are necessary to compute explicit
solutions, while the latter are necessary in order to
characterize the modulational instability of the
Benjamin-Feir (or Lighthill) type [5,6]. This instability
originates from the explosive growth of side band fre-
quencies and wave numbers adjacent to w, and k in the
original wave train.

The difficulties outlined above may be overcome by
making use of a perturbation theory to determine explic-
itly the coefficients in the final NLS equation. We restrict
our study to the case of slow modulation (the change of
the wave envelope is slow in both space and time in com-
parison to the carrier wave), which allows us to use the
stretched coordinates method, and we consider an infinite
system without dissipation in (1+ 1) dimensions.

To be specific, we will characterize rigorously the in-
stability of the Benjamin-Feir type for electromagnetic
waves in a saturated ferro- or ferrimagnetic medium.
This is not only important from a theoretical point of
view but is also of special interest in experiments and ap-
plications. This characterization is carried out by con-
structing a three-dimensional space of physical parame-
ters, and by determining the regions where the NLS
equation admits or does not admit solitonic solutions. In
the solitonic case, the wave train is destroyed, bunching
into solitons. This is an electromagnetic analog of the
well-known Benjamin-Feir instability for the Stokes wave
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train in water waves. This is what we call the focusing
case. In the nonsolitonic, defocusing case, only dark-
soliton-type solutions of NLS exist, and the wave train is
stable and only slowly modulated in amplitude. With a
detailed analysis of the dispersion relation, we clarify the
relation between its usual representation in the (k,w)
plane and the three new parameters, and interpret the re-
gions obtained in terms of the classical former representa-
tion. In this way we determine, a priori, the stability or
instability of the carrier wave. Furthermore, we found
the existence of transition points between the focusing
and defocusing regimes (of the carrier wave) in the
branch of the dispersion relation corresponding to left el-
liptically polarized waves. No such point of transition, or
stability-instability windows exist for right elliptically po-
larized waves, which we show to be always stable. It
should be remarked that, even in the linear theory, the
polarization of a monochromatic wave in the considered
medium is entirely determined by the choice of k and one
of the three corresponding w(k) branches, and that we
consider here only monochromatic waves.

In the particular case of longitudinal propagation (cir-
cular polarization), another new result is obtained: a
plane wave of positive helicity (a left circularly polarized
wave in the optical convention) propagating parallel to
the applied field is destroyed, converted into solitons, and
a plane wave of negative helicity (a right circularly polar-
ized wave) propagates without bunching, being only slow-
ly modulated in its amplitude. In this case there are no
points of transition focusing and defocusing and further-
more we can give explicit expressions for the solutions.

This paper is organized as follows: In Sec. II we give
the mathematical formulation of the phenomenological
model. In Section III, the results of the perturbation
scheme are given. In Sec. IV we construct the space of
the physical parameters and describe the regions of sta-
bility or instability. Also given in this section are re-
duced explicit expressions for the coefficients of the de-
rived NLS equation, for some particular values of the pa-
rameters. In Sec. V we establish, in the dispersion rela-
tion, the transition points between the focusing and de-
focusing regimes. A word on the experimental perspec-
tives of this work is added in Sec. VI, and Sec. VII, the
Conclusion, contains a brief note on the first results ob-
tained in (2+ 1) dimensions on the present matter. Final-
ly, Appendix A contains some mathematical details of
the perturbation theory.

II. MATHEMATICAL FORMULATION
OF THE PHENOMENOLOGICAL MODEL

In this section we introduce the model our study is
based upon. This model, often used in the theoretical or
experimental approach to waves in ferrites [1,2], is also
sufficient for our purposes. It has the advantage of max-
imum tractability and it provides a simple phenomeno-
logical description of periodic electromagnetic phenome-
na in a saturated infinite ferromagnet. The range of va-
lidity of such a phenomenological description is just that
of all theories which involve macroscopic field quantities
such as D,H and the mean field approximation E,B in
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the Maxwell equation. It is based on the general form of
Maxwell’s equations in the infinite ferrite, which in MKS
units reads

VXEz—a—B R (1)
at
VXH=a—D~ . (2)
ot

In (1) and (2), E, B, D, and H have their standard mean-
ings. The constitutive equations in the ferromagnetic for
E, D and H,B are given by

D=¢E, (3)
B=py(H+M) , )

where we shall assume that € is the scalar permittivity of
a ferromagnet, p, is the magnetic permeability in the vac-
uum, and M is the magnetization density in a ferromag-
net. We consider a ferromagnet with saturated magneti-
zation density. In [7] it was shown that the dynamic
equation for M when damping is neglected is

a_a?_ = _“OSM X Heﬁ N (5a)

where 6 is the gyromagnetic ratio and Hg is
H=H+pBn(n-M)+aVM .

The terms —udAM Xn(n-M) and —p,daM X VM
represent the effect of magnetic anisotropy and inhomo-
geneous exchange interaction, respectively. We may here
neglect these terms: the first one simply by assuming our
medium to be isotropic and the second one because we
are considering electromagnetic waves and the space
scales associated with them substantially exceed the
characteristic length of the inhomogeneous exchange in-
teraction (given by a). This last one is very important
when we consider spin waves, but this is not the case
here. For this reason we will work with the equation

= SMXH . (5b)

The approximation of (5a) by (5b) has been used by most
authors who studied such problems [1,2].
Equation (5b) shows that M is not parallel to H and
that it is nonlinearly related to H.
Taking the curl of Eq. (2) and using (1), (3), and (4), we
have
rer 1 3%
—V(V-H+V H——Z——Z(H+M) , (6)
c” ot
where ¢ =1/1/&u, is the speed of light based on the
dielectric constant of the ferromagnet. If the magnetiza-
tion were zero, V-H=0 and (6) would be the linear wave
equation, satisfied by isotropic, dispersionless transverse
waves propagating at speed c¢. Such is not the case and
Egs. (5b) and (6) are a system of nonlinear partial
differential equations for M and H. All linear theories
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are based on Eq. (6) and a linearized version of (5b) which
is obtained considering that H is composed of an applied
constant field plus a superposed small alternating (rf) field
of constant amplitude. We do not make such a hy-
pothesis and we are going to consider the harmonic solu-
tions of (5b) and (6) in one space coordinate x and time ¢
which, although of small amplitude, are nevertheless
large enough so that the effect of nonlinearity cannot be
neglected. Nonlinear terms give rise to a modulation of
the amplitude as well as waves of higher harmonics. Our
aim is to investigate how the amplitude is modulated by
nonlinear effects with the condition that this modulation
is slow compared to the period of the oscillations of the
sinusoidal part.

III. PERTURBATION SCHEME,
NONLINEAR SCHRODINGER EQUATION,
AND THE ASSOCIATED
BENJAMIN-FEIR INSTABILITY

Let us seek a solution of (5b) and (6) under the form of
a Fourier expansion in harmonics of the fundamental
E =expli(kx —wt)} as

+ o0
> M'E", (7a)

n=-—oo

M=

+
= 3 HE", (7b)
where the Fourier components are developed in a Taylor

series in powers of the small parameter € measuring the
normalized amplitude of the applied rf field:

M'= 3 M}, T), (8a)
j=0

H"= i eHNE,T) . (8b)
Jj=0

Here above we have the reality conditions M~ "=(M")*
and H™"=(H")*, where the asterisk denotes complex
conjugation and 7,£ are slow variables introduced
through the stretching

r=¢€t , (9a)
E=e(x—"1), (9b)

where the velocity V will be determined later as a solva-
bility condition of Egs. (5b) and (6). The expansions (7)
and (8) include fast local oscillations through the depen-
dence on the harmonics E" and slow variation (modula-
tion) in amplitude taken into account by the 7,£ depen-
dence of M} and Hj}. The amplitude of the wave is thus
assumed to vary along the direction of propagation only.
The effect of transverse variation is not studied here. A
brief note on the preliminary results we have already ob-
tained on this subject may be found at the end of this pa-
per (Sec. VII). Substituting (7a) and (7b) in (5b) and (6)
for M=(M, ,M,,M,) and H=(H,,H,,H,); rescaling M,
H and ¢ into du,M/c, SugH/c, and ct; and collecting
powers of E, we obtain
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i-—ma) M'=— ¥ M’XHY, (10a)
ptq=n
[°—~— mco———n 2 |(HI+M])
2 ik a2 | HM1—5. ), (10b)
ax? dx s s, x /s

where s=x, y, and z and §;; is the Kronecker symbol
(8;;=1 for s=i and 0 otherwise). Introducing now the
expansions (8) and the slow variables (9) into (10), we may
proceed to collect and solve different orders €/ and har-
monics n [order (j,n)] with the following assumptions:
we suppose that MJ=m and HJ are constants and that
Mg, H3=0 for n#0. The assumed conditions at infinity
are M j",H jf' — 0 for j70, and all n except for

o0
(,|n])=(1,1), where the limit is assumed to be a finite
constant. The field H) represents the external constant
magnetic field where the ferrite is immersed and MJ=m
is close to the magnetization of saturation. The state
HJ, M3 represents an initial static state and the following
terms of their developments (8a) and (8b), a perturbation
of this state. For an appropriate choice of the Cartesian
coordinate system, we may write m=(m,,m,,0). We ob-
tain the following results (the details of their derivation
are in Appendix A) for different orders (j,n). For j=0
we find that H is necessarily colinear to m and define a
such that H)=am. For j=1 and n > 1 we can show that

Hi=M;=0. (11
For (j,n)=1,1) we have

M, ,=—H|, =—iyumg(,7), (12a)

Mi,=—vH],=iyum.g(&), (12b)

M},=—vH],=—7’0g(§7), (12¢)

where ¥ and u are two dependent parameters given by

—_kK
}/—1—? , (13)
p=1l+ay . (14)

The function g(&,7) is arbitrary and such that
limg__m,lg(é,‘r)l2 is a finite constant that we will call A,
(A70). The expressions (12a), (12b), and (12c) are ob-
tained under the condition that  verifies the dispersion
relation

(@*—kH)[(1+a)o?*—ak?|(1+a)m?

+(1+a)o*—ak?PPm2=(0?*—k?)?? . (15
The very important and useful relation giving k as a func-
tion of w (which we will use in Secs. IV and V) is obtained
from (15) and reads
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172
k. —o | (1F@)2atsin’p)—2v? FV (1+a)’sin*p+4vicos’p (16)
+= )
2[a(a+sin’p)—v?]
where v=w/m and ¢ are defined by m,=m cosp and Q= k? V- 23
=m sing. These two possible values of k represent - w3( u). 23)

two elliptically polarized waves propagating in the same
direction but with different velocities.

We now make the hypothesis that the pulsation of the
applied monochromatic rf wave is one of the three solu-
tions w(k) of (15). Thus, the group velocity of the pri-
mary progressive wave reads

v,= ac;(kk) _ (bz—H) u, (17
yuu“+b+1
where u =w/k is the phase velocity and the parameter b
is given by

2,2
_wmg

b
720?

(18)

For (j,n)=(1,0), we have

H{=M?=0, (19)

and this completes the results at order (1,n) for all n. Us-
ing these results, we can determine the orders (2, n) for all
n. For |n|>2, we show that

H}=Mj;=0. (20)
The order (2,2) is given by
2
yum, (1—b)
M} =—H} =——7>——3g?%, (21a)
2 2 2u¥(1+a) &
M3}, =—vH},= y“ “(1+b)g? (21b)
2
iyu'm,m
M3, =—yH3,=TE g 21c)
uw

For (2,1), we obtain expressions for the H},M} com-
ponents. They read

Hé,x__—_Méx —yum, f+Qm, b+1+2a7’) §

(22a)
m, a

H},=pm f+0—(1-b)ZE 22b
2,y ”‘mxf y ( b)ag ( )
H) . =iyof , (22¢)
M}, =—yum,f+Qm (b+1+2ay) SZ’_ (22d)
M;,z=—iy2wf+2iymni€ (22¢)

3’

where f(£,7) is an arbitrary function and (2 is

The expressions (22a)—(22e) are obtained under some sol-
vability condition which determines ¥ in Eq. (9b). It
reads

=V, —g—z - (24)
For the terms of order (2,0), we obtain
HY =—M5 . =m,(1+ap)® , (25a)
H%’,ﬁ-éng:m,(Ha)q) —7—;‘:—51—“2 gl
(25b)
HY,=M9,=0, (25¢)

where @ is a function of (£,7) which will be determined
below and S is the parameter
N 1

B= 1*7 . (26)
The next order (3,n) is the most laborious, and it is the
one which allows us to find the function ®(£,7) and the
nonlinear evolution of g(&,7). At the order (3,0), we ob-
tain the equation determining ®(&,7). It reads

=_1_ 2B (1— ) l’___ 2

D, T) p 1+ af m}— Ap |lgl
4 yeQAur 27

vd
with
d=mX1+aB)+(1+a)Bm}?, (28)
r
=————[2by(l1+a)+2u—(b>+1)1—y)],
y,uz(l+a)[ 14 H 12)

29)
=y’ . (30)

At the order (3,1), we obtain a compatibility condition
which gives a nonlinear evolution equation for g(&,7) [the
term f coming from H},M} disappears using (15)]. It
reads

og , 9% 2
+ +DAg=0, 31
Aa +Ba§2 Cglgl g=0 (31
with the condition |g|>—A for £&— — o, and where the
real constants A, B, C, and D are given by
2w
A=—=""-(b+1+yuu?), (32)
uu



The nature of solutions of the NLS as well as its physi-
cal meaning depend drastically on the sign of the product
BC (or E) [9]. For BC >0 we know that the incident car-
rier wave is destroyed by nonlinearity and dispersion and
it bunches into solitons (the focusing case). For BC <0
the incident carrier wave evolves without bunching in a
self-similar form. These two cases characterize regions in
the space of the physical parameters (scalar permittivity,
magnetic permeability, gyromagnetic ratio, values of the
dc applied field, frequency of the rf field etc.) where sta-
bility or instability of the incident carrier wave occurs.
This instability of electromagnetic propagation in a sa-
turated ferrite is reminiscent of the Benjamin-Feir-
instability phenomenon of the Stokes wave train, in
water-wave theory [5,6].

IV. THE SPACE OF PARAMETERS y, a,
AND b: REGIONS OF STABILITY
OR INSTABILITY FOR THE WAVE TRAIN

The BC product in (31) can be written as
LP

BC:GY”T ’ (45)
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2 =(b+1?2—[2(b+1)+yuulu—>b), 37
B= Tyu _?, (33) Q=( > —[2( )+ yuulu—>b) (37
(b+1+ypu’) H=(1—y)1—3b)(b+1)?
T L 4 +y[2b+ 1) +ypu?
21+a) Q 34 r{2b+ Dy’
2 X[(a+1)b+1)+u(1—3b)], (38)
D=+%%[2y—(b+l)(l—y)]%, (35)
) L=(b+12B,—[2(b+1)+ypu®lB,, (39)
with 2, @Q, #, and L given by
P=3b2—b—(b+1)3ay+uu?), (36)  with
_
B=(1—y){(1—p)[15b2—6b—1]+4u(1—3b)} , (40)
B,=2y(b+1D{(1—p)[(1=3b)u+(1+a)b+1)]—2u(1+a)}
+(1—y)1—b){—3bX(1—y)+b[(1—y)3u—5)+4(3y — Du]+u(1—y)} —4yp*(1-3b) . (41)
M
We can now make the transformation with @ always positive, given by
g(g,f)=¢(§’r)ei(D/A)7»T , (42) o= F3u2 . 46)
B c 201+a)b+1+yuu?)?
T=—7, X=¢£, E=—, (43) . . .
A B The sign of BC is determined by the product yulLP/Q
. through the values of the three positive parameters
and we obtain
ipr+oxx+Egqlel>=0. (44) “=% ) 47)
Equation (31) [or Eq. (44)] is the nonlinear Schrédinger |HY|
equation [8], which appears in many branches of physics a= ~%— , (48)
when nonlinear modulation of waves is studied. This M3l
equation has been extensively studied by several methods 2,2, 2
and we know that it belongs to the class of soliton equa- b= %%Q . (49)
tions.

The first one is the phase velocity, the second one mea-
sures the relative intensity between the external (con-
stant) magnetic field (H) and the magnetization of satu-
ration (M), and the last one is related to the angle ¢ be-
tween the direction of propagation of the carrier wave
and the external magnetic field H). The complexity of
expressions (32) to (41) prevents us from expressing the
results in terms of ¢ (or cose) itself as a third variable,
and we must introduce the “auxiliary” variable b given
by Eq. (49) to be able to achieve the discussion. Note
that b depends also on a and u.

There are several regions in the (b,u,a) space where
BC is positive, zero, or negative. In general we are con-
strained to make a numerical and approximate study of
the expressions of B and C to determine this sign. For a
few very particular values or limits of one of the three pa-
rameters u, a, and b only, we are able to calculate exactly
the sign of BC as a function of the two parameters left.
We will show in this section the results concerning the
sign of BC in a plane (b, u) with a given.

Expressions (33) and (34) give us B and C exactly.
However, because of the high complexity of these expres-



2280

sions, we cannot obtain the sign of BC as an explicit func-
tion of u, a, and b and, consequently, we cannot establish
exactly the regions of transition between the stable and
unstable regimes. In order to get these regions, we have
to make an analytical and numerical study of the expres-
sions of B and C. We divide the presentation of our re-
sults into three groups according to their nature: the first
one, contained in Sec. IV A, corresponds to the results
obtained through an analytical and, mainly, numerical
analysis of the expressions of B and C. Figure 2, at the
end of this subsection, summarizes the results on the BC
sign as a function of , @, and b. The second group, given
in Sec IV B, corresponds to the cases where we obtain ap-
proximative explicit analytical expressions for B and C
and, subsequently, the sign of BC. Finally, Sec. IVC,
contains the very important case for which we can calcu-
late exactly and explicitly the values of 4, B, C and the
sign of the BC product as a function of u, a and g itself.

A. The sign of the BC product: an analytical
and numerical study

We must first determine range of variation of (b,u,a)
when the physical parameters take all their possible
values. The magnetic field H) and magnetization density
Mg have the same direction, so that a >0 (the other solu-
tion is unstable). a takes thus all positive real values. We
can choose u positive, and an elementary study of the
three branches w(k) of the dispersion relation (15) shows
that u takes all positive real values except in the interval

Va/(1+a), Via+sin’p)/(1+a)

It remains to determine the allowed values of b (as a func-
tion of @ and u). b=u’m?/y’w? is a positive number or
zero.

From the dispersion relation (15), which can be written
as

yu(l+a)mr=(1—b)T,
I'\:,},sz ,

we see that the sign and the values of b are determined
from those of u, through the values of ¥ (y=1—1/u?)
and p [u=1+a(1—1/u?)] with a >0 given. We see that
if

yu>0, then b€]0,1[ ,
and if
yu<0, then bE ], o] .
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Table I summarizes the results of the sign of yu and the
values of b as a function of the values of u.

Now we consider the expression of @, P, and .L [given
by (37), (36), and (39)] as being functions of (b,u) (for a
given) with (b,u) two free parameters which can take all
the values between zero and infinite, independently of one
another. This is a matter of convenience and the final re-
sults on BC’s sign given in Fig. 2 will be carried out con-
sidering the preceding results.

Sign of Q(b,u,a). For a fixed, the shape of the curve
@Q(b,u)=0 is obtained numerically with the aid of the
following analytical results (we do not write a explicitly
in the arguments of @, 7, . . ., when it is not necessary).

For b =0,

Q0,u)=—u*(1+2ay +a*y?)

becomes zero only for u =u, € |V a/(1+a),1[.
For b=1,

Q(Lu)=u—a*y —ay(4—3y)+4—4y]
becomes zero only for u =v, such that
3y, —4+1V 16—8y,—7y?
2yt

a= ,
where y,=1—1/v3.

For u=1, @Q=(b+1)(3b—1) becomes zero only if
b=1.

For u — o,

Q~—(1+a)u*(1+a—>b)

becomes zero only for b=1+a.

These results are summarized in Fig. 1 (dashed line).
At the left (right) of the curve @Q(b,u)=0, this function is
positive (negative).

Sign of P(b,u,a). Identically, as for @, the shape of
the curve P(b,u )=0 is obtained numerically, considering
that

For b =0,

P0,u)=—u*(1+4ay —3ay?)P(b,u)=0
has a unique solution

u=u,€Va/(1+a),l1[ .

Foru=1,
P(b,1)=(b—1)(3b+1)

becomes zero only if b=1. Figure 1 contains these re-

TABLE I. The sign of the product yu for u € ]0, «[ and the corresponding values of b.

172 172 12
a a a
Vv = € ,1 =1 u=1]1,
alues of u u€]lo, T [ u T u€e] Tt a [ u ] [
Sign of y - - - y=0 +
Sign of u - p=0 + + +
Sign of yu + yu=0 — yu=0 +
Values of b be]0,1] b=0 beE]l, of b not defined bE10,1]
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/
. L£L<0
l+ab— £>0_ [~ 1!—————————
P>0 /s
Q>0 Sy
/R
4 o= —--
//
—
1 e
Z7
. ~ |
/ 7 \ £>0
by =g K , P<0
1} I Nl )i ! 2<0
3| £<0 /'r‘/\ |
1
ug e u  ug uz L£<0 us 1 wvy=1

FIG. 1. Curves Q(b,u)=0 (dashed line), P(b,u)=0 (dot-
dashed line) and .L(b,u)=0 (solid line), with an indication of
the sign of @(b,u ), P(b,u), and .L(b,u) (@=1).

sults also (dot-dashed line).

Sign of L(b,u,a). The curve defined in the quarter of
plane b >0, u >0 by L(b,u,a)=0 (for a fixed a) presents
three branches. We begin by giving the zeros of .L for
same particular values of u.

For u=1,L=(b>—1)(9b>—1) becomes O for b=1,1.

For u —0,

L~—a?y*[15b2—6(1—2a)b —1—4a]

becomes zero for

(1—2a)+2V'3(2+2a+3a?)

b=b0(a)= 3 15

(50)

For u — o,
L(b,u)~8(1+a)1—b)u?

becomes zero if b=1. Now we analyze the zeros of .L for
some particular values of b. In the case b =0, we obtain

L(0,u)=(1—y)[3+y(4a+1)]

+’y—l__1—(1’—2-—611/2)[—l-&-6y+az'y+3y2

+14ay?+4a’y?+ay3+4a?y?] .

The expression .L(0,u) for u —0, u =V a/(1+a), and
u =1 becomes

L(0,u) ~0—a2‘y4(1+4a)<0 ,
u—

’

2
Lo,Varita)=21E2r
a

£L(0,1)=1>0.

We see that £(0,u)=0 has an odd number of roots for
u€]0,Va/(1+a) and an even number of roots for
u€lvVa/(1+a),1[. Numerically, we observe that there
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is one root u; for u €10, Va/(1+a)[, and two roots
ug,us (uy <us)for u € Va/(1+a),1[.

We can only know the asymptotic values of u3, u,, and
us for a>>0. They read

U I P
V2 4a |’
1
e
1
“s=1"%

We also give here the expression of the curve joining
by(a) to u; for a>>1, which will be used later. It reads
2

3—2u? "’
Moreover, we can prove that the branches do not cross

the line ¥ =V'a/(1+a) for any value of b.
For b=1,

b=1

L(1,u)=8(1+a)y[a’y +ay(4—3y)+4y —4]

becomes zero for the same value of u which satisfies
Q(1,u)=0, i.e., u =v,. Figure 1 contains all the numeri-
cal and analytical results about .L(b,u )=0 (solid line).

Now we are in a position to calculate numerically the
sign of BC. Bearing in mind that BC=0yu(P.L/Q),
with 6> 0, and using the results of Fig. 1 and Table I, we
arrive at the final results on the BC sign, as a function of
(b,u) with a fixed. These results are summarized in Fig.
2. The dotted areas are prohibited regions in the
b,u,a) space. (The fact that u&
[Va/(1+a),V (a+sin’p)/(1+a)] is not represented.)
The signs of BC are indicated inside each allowed region
in this plane. In the regions where BC >0, in-going plane
waves are unstable and in those where BC <0, waves are
stable. This figure summarizes the first main result of our
work: having the initial physical parameters |HY|, |M3],
o, k, and @, we can place the corresponding point in the
(b,u) plane [using (47)-(49)] and know if we are in a re-
gion of stability or unstability for the carrier wave.

bo(a

Wl =

<

1(a) u

FIG. 2. The sign of BC in the (b, u) plane for a given (a=1).
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B. The sign of the BC product: analytical
and approximate expressions for 4, B, and C

The complete solution concerning the sign of BC is
given in Fig. 2. But it is mainly a numerical solution, and
the problem of the enormous complexity of the
coefficients 4, B, and C remains. In particular, formal
and easier explicit expressions for 4, B, and C and the as-
sociated BC sign, as functions of the physical parameters,
even if they are approximate, are interesting, for example,
for constructing explicitly the soliton or the dark-soliton
solution. We have calculated thus A4, B, and C in three
particular cases.

The case a— », o fixed. This is an important case of
a physical point of view because a— « means that the
external magnetic field |HJ| is strong (a=|HJ|/|MJ|) in
relation to the magnetization of saturation |M9|. There
are two subcases that are easy to study by making
¥ =a /a in the dispersion relation

2

(1+aPmi+S(1+a)1+a)m}=5o .
a a

For a— « with o fixed, we obtain two solutions for a:
a=—cos’p and a=—1.
For a = —cos’p, we have
2 2
. __cosp , u=l—m+0(1/a) ,
a 2a
2 2. 4
p~ M assin'g
w’cos’p
and @ such that m,=|m|cosp, m=Mj, and 4,B, and C
given by
A~ —2m?o cos’psin’p ,

2
@ 6
B~ ~3—a2 cos'@ ,

3 m! 4 - 10
C~———cos @sin .
2« cos ¢ 4

Thus BC <0. Since u —1, b — + oo, this subcase is sit-
uated near to the line u =1, and at his left, into the cen-
tral upper domain marked by a minus sign in Fig. 2.

For a = —1 we have

b~ w’cos’p
m2a’sin‘p
with A4, B, and C given by

A ~2m’osin’p ,
2
®
B~—-3—,
)

H. LEBLOND AND M. MANNA 50
6
C~——— 3az) 2
2a’'m “sin“@
Thus BC>0 and since b—0, u—1 with

u <Va/(1+a) because for y=—1/a, u=Va/(1+a)l,
this subcase is situated near and left to the line
u=Va/(1+a) into the region BC >0 in Fig. 2.

The case a— », b and u fixed. From the dispersion
relation and considering that u~ay, for a— «, we ob-
tain

o~am , b~cos’p,

and A, B, and C are given by

A~—2a3y3m3 ,
2
B~—C—(b+1)3+u?),
u

C~—2m*®yS[b+1+y(1—3b)] .

Thus, the sign of BC is governed by the quantity
[b+1+y(1—3b)]. Thus, if u>1/v2, BC>0 for all
b€10,+ »[,andif u <1/V2, BC >0 for

beEN—2/(3—2u?),+ .

The case u —0. In this case we have (with m,, m,, and
a constant)

- 2
o~mV ala+sin’p) , b_)ic__o.s_;g ,
a-+sin“g
2m’ s020 11372
A~ 0 [ala+sin“g)]*’*,
B~ 3" 20t sinp(1 —a)
2 [2a+sin“g al)l,
34
c~‘;"f4 (1+a)F ,
u
where

F=4a*1—3cos’p)+aX(9— 14 cos’p—3 cos'p)
+2a sin’p(3+cos’p) +sin*yp .

To determine the sign of BC, it is more convenient to use

the following expression of C:

_ a’m* (a+sin’p)?
2u 14 1+a

with f given by
f=4a(1—3b)—15b%+6b+1 .

C

f

Thus BC has the sign of — f:

BC>0 if b>byla)

and

BC <0 if b<byla).
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The result may be written explicitly in terms of @:

(a+Dbgla) '
a+b0(a)

b

BC >0 if and only if cosp >

with b,(a) given by (50).

C. The sign of the BC product: exact analytical
solution for longitudinal propagation

Let us consider now the only case having an analytical
exact solution. It is represented by the straight line b =1
in Fig. 2 and it corresponds to ¢=0: the direction of
propagation of the incident wave is parallel to the exter-
nal magnetic field H). This case is very useful in practi-
cal situations. Putting m, =m, m,=0, ¢=0, and e==1,
a parameter indicating the two possible polarizations of
the wave, and using the parameter v=w/m, the disper-
sion relation (16) may be written as follows:

172

v+e(l+a)
= yra v 1
ke=o v+ea G
We also know that
4 172
_ v+ea
T | v+e(l+a) ’ 52
—1
= 53
Y= ater’ 53)
€v
= . 54
# a+tev (54)

Consequently, the coefficients 4, B, and C are exactly
given by

3
——2€m—vz3[2(a+ev)(a+ev+1)—ev] , (55a)
(atev)
B=—2m%H2 [(atev)(l+4a)+3a]
(atev][2(atev)ia+ev+1)—ev]? ’
(55b)
C=gem*ysietertl) (55¢)
(a+ev)
In this case the sign of BC is the sign of the quantity
—e[latev+1][(atev)(l+4a)+3a]l . (56)

Let us make e=1. For v&€[0, « [, we obtain u between
Va/(a+1) and 1, and we have BC <0, as is easy to see
in Fig. 2.

If we take e= —1, we have, from (56), that BC <0 if v
belongs to

[(1+a)a/(1+4a),1+af

and BC >0 otherwise. On the other hand, v does not be-
long to [a,a+ 1] since u must be real. Thus BC is in this
case always positive and represented by a part of the
straight line b =1, with

in Fig. 2.
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V. THE DISPERSION RELATION:
TRANSITION OF THE WAVE TRAIN
BETWEEN FOCUSING AND DEFOCUSING STATES

In this last section, using the results of Sec. IV, and
analyzing the dispersion relation [in the form (15) or
(16)], we show the existence of points in the plane (k,w),
situated on the curve w(k), where the transition between
focusing and defocusing states in the propagation regime
of the wave train occurs: by changing w and k, so that
the point representing the incident plane wave moves
along the curve w(k), the BC sign changes, when it passes
through the mentioned points. This phenomenon is an
electromagnetic analog of the Benjamin-Feir instability of
the Stokes wave train in hydrodynamics.

Relation (16) allows us to study k as a function of w
and to plot the function (k) without giving its explicit
expression, which is too complicated. We have, from (16)
and for @70, that k. =0 for =0, k_ =0 for 0=1+a,
and k_—® as o—V ala+sin’p). We have also the
asymptotic expansion

2
ki=w:t%mx—%m7[4a+l+(1—2a)sin2:p]+0 i} ] .
w
(57)
For w—0, the slope of the tangents w/k . are
172 . 172
o | a o |atsin’p (58)
k_ a+1 k., a+1

In Fig. 3 we have represented the three branches of the
dispersion relation w(k). They are distinguished by the
numbers 1, 2, and 3. Also we call k_ =P (k. =N) be-
cause k_ (k) represents a wave of positive (negative)
helicity.

We arrive thus at the second main result of our work:
to establish, for each branch of the dispersion relation,

w
BC >0 P3
M,
BC <0
N,2
BC >0 M,
m(l+ a)
BC <0
N o Attt L L L LR
A BC <O A1
BC >0

FIG. 3. Plot of w against k with an indication of the points of
transition of the regimes and the sign of BC in each region.
Positive (negative) helicity is indicated P (N).
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the points of transition between the focusing and defocus-
ing regimes of the incident wave. Hence for each branch
we have the following.

Branch 1. Here u €10,V a/(1+a)[ and we see (using
Fig. 2) that there is one point of transition M,(k,,w,) in
which the sign of BC changes, passing from BC >0 to
BC <0 for ¢ > @y, where the angle ¢, is determined using
the point (b,,0) in Fig. 2. Using the expression (50) of
bo(a) and the fact that

b=acos’p/(a+sin’p) ,
for u =0, we obtain
(1+a)byla)

2 = —
cos“@q atbyla) (59)

which determines @, The values of k; and w; (coordi-
nates of the point of transition M;) are determined as be-
ing the values of k and w satisfying the functional relation

o, .
L b(a)s),k—_‘(‘a;s—) =0, (60)
where
(o) )7 5
I+a|l— - m “cos“@
blo,)= - (61)
k_(0,) ]
1- w?
(0]

This result shows that a right elliptically polarized wave,
traveling through a saturated ferrite, may be focused or
defocused depending on the position of the point
representative of it in branch 1.

Branch 2. There are no points of transition in this
branch. The values of u belong to

]\/(a+sin2¢))/(1+a) [

and we see from Fig. 2 that BC <0. This result shows
that left elliptically polarized waves are stable. Note that
the values of u belonging to

Wa/(1+a), Via+sin?p)/(1+a)]

are never reached.

Branch 3. In this case u belongs to [1, ©[ and from
Fig. 2 we can see that for each ¢70, 7 /2, there are al-
ways two points of transition, M,(k,»,) and M,(k,,w,).
In fact, all the curves defined in the (b,u) plane by
@=const pass through the point (1,1). Thus they all will
cross the two curves @Q(b,u)=0 and .L(b,u)=0. The
values of k|,w, and k,,, are those for which

£ |bloy),—2— | =0 (62)
k_.((l)l)
and
Q |blw,),—2— |=0, 63)
k_((l)z)

with b(w) given by (61). On branch 3 and between M,
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and M,, BC <0, and BC > 0 elsewhere.

In the case of longitudinal propagation, we have b=1,
and there are no transition points on each branch. The
sign of BC is fixed for each branch. Hence on branch 2,
BC <0 and on branches 1 and 3, BC>0. We have
shown, thus, that right circularly polarized plane waves
(negative helicity) or left circularly polarized ones (posi-
tive helicity) are modulationally stable or modulationally
unstable, respectively. Finally, let us give the expressions
for ¢(X,T) in (44) for this case.

On branch N in Fig. 3, an in-going (carrier) plane wave
at §— — oo is slowly modulated for its amplitude in the
form of a tanh function. The expression of the corre-
sponding dark soliton of (44), calculated using Hirota’s
method [10], and representing the defocusing case, is
given by

X,T)=VAexpi[KX —(K2+20")T
@( ) expi[ (K2+2p?) ]ZAIEI(H_")
[ 2
XtanthX—i-R (22K/R+r)T_Hr e
with
AE el ]
p= [ ‘T [ RZ 1 (65)

and with K, R, and A being arbitrary constants, and R
satisfying |R | < 2p.

On the two branches P in Fig. 3, focusing of the wave
envelope occurs and some given initial data bunch into
solitons of the form

3
E

exp[ —2iEX —4i(E*— )T
cosh2n(X — X, +4ET)

(X, T)= , (66)

where 7, §, and X, are arbitrary constants. Using (64) or
(66) in (42), and the result in (12a)-(12c), we can obtain
the explicit form of solutions for M}, and H],
(s=x,y,2).

V1. EXPERIMENTAL PERSPECTIVES

Experiments made on yttrium iron garnet thin films
[13] (which are not described by our model, because the
hypothesis of isotropy is not verified in thin films, and the
demagnetizing field is no more negligible) show that the
difference between focusing and defocusing regimes can
be observed experimentally. The pulsations of the
focusing-defocusing transitions @, on branch 1 and o,
and @, on branch 3, could thus be measured experimen-
tally. These quantities are theoretically predicted by for-
mulas (60), (62), and (63), which define them as implicit
functions of the parameters a and @ of the external field.
Numerically computed values of w, and w, could be com-
pared with experimentally obtained ones.

VII. SUMMARY, CONCLUSIONS,
AND PERSPECTIVES

We have studied the modulation of an electromagnetic
wave in an infinite saturated ferromagnet in the presence
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of an external magnetic field. We have shown that this
modulation is governed by the NLS equation. Envelope
soliton solutions or dark-soliton solutions exist only if the
coefficients of this NLS equation belong to a determined
set of values in a given space of physical parameters. We
have established these regions. We have analyzed the
dispersion relation and we have shown that there are
points of transition between focusing and defocusing for
waves with positive helicity and no transition for negative
helicity. The very important particular case of longitudi-
nal propagation of plane waves was studied in detail and
its explicit solution calculated. These facts determine for
the first time a Benjamin-Feir-instability phenomenon in
electromagnetic propagation in a saturated ferrite. All
our results are valid under the hypothesis that the in-
cident carrier wave is only one of the polarized waves al-
lowed by the dispersion relation and if the two-wave in-
teraction is not considered.

This work does not take into account the effect of
transverse variation of the amplitude. The authors are
presently working on this problem, introducing a second
space variable in the perturbative calculus. Although
this latter work is not achieved, we can announce here
the main result: the (2+1) dimensions generalization of
Eq. (31) is not the so-called two-dimensional NLS equa-
tion obtained with replacing operator 82/9£2 in (31) by a
two-dimensional Laplacian A, but an equation analog in
form to Davey and Stewartson’s [11], although nonin-
tegrable in the general case.

In the longitudinal case (angle ¢ =0), one obtains the
system

2 2
i4%8 198 98 po(ig)t—2)+Egd=0,
ar T ag2 a2
2 2 20, |2
9°P =Fa <I>+Ga lg|
a§2 agZ a§2
where A4, B, C, D, E, F, and G are real constants, { is a
transverse space variable of the same order of magnitude
as £, and ® is an auxiliary field.

A, B, C, D, E, F, and G have been explicitly calculated:
they never take the values for which system (67) is com-
pletely integrable and admits localized soliton solutions
[12]. In the more general case where angle 70, analog
equations, but with two auxiliary fields, are obtained.

We are trying to find particular values of the parame-
ters for which this system reduces to the integrable
Davey-Stewartson equation; later, a study of properties of
the system obtained in the general (nonintegrable) case
should be done. We have left for future investigation the
inclusion of dissipation in the model (Landau damping)
which would lead to the nonlinear Ginsburg-Landau
equation.

(67a)

’ (67b)

APPENDIX

There we give some mathematical details of the deriva-
tion of the equations of Sec. III.

Equations (10a) and (10b) give, using (8a) and (8b) and
(9a) and (9b), in leading order (0, n),
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inoMj= Y M{XM], (A1)
ptg=n
n0®(Hy +M§ )=n’k*H} (1-5,,), (A2)
where s =x,y,z.
This system has the particular solution
Mg=mj, , , (A3)
Hy=amd, , , (A4)
where a is a constant.
At order (1,n) we obtain
inoMi=mX(H}—aM}) , (AS)
n*o*H} +M7 )=n’k?H} (1-5,,) . (A6)

Equation (A6) gives the components M ; as functions of
HY ;. Using this in (AS), we find a linear homogeneous
system for H{ ., H{ ,, and H{ ,. It reads

inoH} ,+muH? , =0, (A7)
inoyH} ,—m,uH7,=0, (A8)
—(1+a)m H] ,+muH] ,+inyoH] ,= (A9)
The determinant of this system, A(n), is
A(n)=ino[ —n*y??*+pu*mi+yu(1+a)m?],
(A10)

with y,u defined by (13) and (14).
For n =1, A(1) is zero if w satisfies the dispersion rela-
tion

-yl +utm+yu(1+a)m?=0, (A11)

which, when written in terms of a, k, ®, m,, and m,,
gives Eq. (15).

Under this condition, the system has a nontrivial solu-
tion given by (12a), (12b), and (12c). Then for
n=23,..., A(n)¥#0, and we have the trivial solution
(11). For n=0 A(0)=0, and we can choose M{=H?=0
[Eq. (19)]. This completes the solution at order (1,n). At
next order, we have the system

inoMj3—mX(Hj—aM3)
=(M{XH})8,,+(M}*xH}|+M]XH!*)5,

1% 1% aM?
+(M1 XHI )Sn’_z_V aé_ > (AIZ)
—o’n H +M5 ) +n’k2H] (18, )
=—2inwVai§(H’{,s+M'{,s
., 0 g
+ 2mk¥H1,s (1-8,,) . (A13)
For |n|>2, (A13) gives
M3, =—Hj,, (A14)
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M3 =—vyH3, , (A15)  where B is defined by (26). Making use of these equations
, in (A12) and (A13), we find the components of M and H)

M3, =—vH, . (A16) a5 in (25a), (25b), and (25c).

Then (A12) can be reduced to a linear system with deter-
minant

A(n)=inw(1—n?)y’w? (A17)

Thus, A(n)70 if [n| > 2.

For |n| > 2, the system is homogeneous and this shows
(20). For n =2 the system is inhomogeneous. Solving it,
we obtain (21a), (21b), and (21c). For n =1, using (A12)
and (A13), we find an inhomogeneous linear system for
the H} components. It reads
oY, +um,H}, =

—iyum, V +21co*yam Q

o5 aé
(A18)
iyoH),—pm H,; , =iyum, Vag +2iom, Qég
(A19)
—(1+a)mH}  +um H}  +iyoH;,
=—y2mV§——2Q(ym —aymz)-—— (A20)

¢ ¢

The determinant A(1) of the system is, in this case, zero
due to the dispersion relation (15). Therefore, the system
will have a solution only if the determinant of the aug-
mented matrix is also zero. This condition is satisfied if
[Eq. (24)]

V=V,= %
Under this solvability condition we get (22a), (22b), (22c¢),
(22d), and (22¢). At the order (2,0), Egs. (A12) and (A13)
do not contain all the necessary information to determine
completely M2, H). We must go to the order (4,0) of Eq.
(10b) to determine M9 as a function of H3. Using the re-
sults of the orders (0,n) and (1,n), we get

Mg,s = _Hg,s[as,x +ﬁ( 1 —Ss,x )] >

(A21)

(A22)

The next order, (3,n), is given by the following set of
equations:

n*o*HE +M35 ) —n’k?H] (1—8,,x)
—2ma)V¥(H2s+M s)
82
V22— 2—f—2mco (H};+M1;)
o& ’
aZ
ka%-st ngi’,s (1—98,,), (A23)
inoM3—mX(Hj—aM3)
= 3 (MiXHI{+MEXHY])
ptqg=n
d d .
—V—Mj+-—M].
agMz M (A24)
For the order (3,0), Eq. (A24) has a solution only if
m{2Re[M%XI{;*+1\d;"xH}]—VG%M‘;}= (A25)

(Recall that m is defined by (MJ=m). This equation
determines ®(&,7) in terms of g(&,7) [Eq. 27)].

At order (3,1), Eq. (A23) gives the components of vec-
tor M3 as functions of the Hj.

Using these expressions in Eq. (A24), we obtain a linear
3X 3 system for the H% components, whose determinant
is A(1)=0. Thus, this system has solutions only if the
determinant of the augmented matrix is also zero. This
last condition, which is very laborious to write explicitly,
is the nonlinear Schrédinger equation (31).
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FIG. 2. The sign of BC in the (b,u) plane for a given (@=1).



